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Abstract

The promise of association genetics to identify genes or genomic regions controlling complex traits has generated a flurry
of interest. Such phenotype-genotype associations could be useful to accelerate tree breeding cycles, increase precision and
selection intensity for late expressing, low heritability traits. However, the prospects of association genetics in highly
heterozygous undomesticated forest trees can be severely impacted by the presence of cryptic population and pedigree
structure. To investigate how to better account for this, we compared the GLM and five combinations of the Unified Mixed
Model (UMM) on data of a low-density genome-wide association study for growth and wood property traits carried out in a
Eucalyptus globulus population (n = 303) with 7,680 Diversity Array Technology (DArT) markers. Model comparisons were
based on the degree of deviation from the uniform distribution and estimates of the mean square differences between the
observed and expected p-values of all significant marker-trait associations detected. Our analysis revealed the presence of
population and family structure. There was not a single best model for all traits. Striking differences in detection power and
accuracy were observed among the different models especially when population structure was not accounted for. The
UMM method was the best and produced superior results when compared to GLM for all traits. Following stringent
correction for false discoveries, 18 marker-trait associations were detected, 16 for tree diameter growth and two for lignin
monomer composition (S:G ratio), a key wood property trait. The two DArT markers associated with S:G ratio on
chromosome 10, physically map within 1 Mbp of the ferulate 5-hydroxylase (F5H) gene, providing a putative independent
validation of this marker-trait association. This study details the merit of collectively integrate population structure and
relatedness in association analyses in undomesticated, highly heterozygous forest trees, and provides additional insights
into the nature of complex quantitative traits in Eucalyptus.
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Introduction

Understanding genotype-phenotype relationships and discover-

ing genes or genomic segments with roles in the control of complex

traits are challenges of major biological and economic importance.

Deciphering this connection is considered to be geneticists’

ultimate goal to determine the genetic underpinnings of biological

processes while enhancing directional selection strategies in

improvement programs. The combined advances in molecular

markers development, functional genomics, and analytical meth-

ods, made it possible to gain insights into the architecture of

complex traits by identifying underlying genes and genomic

segments involved in their control (i.e., number, magnitude, and

their possible interaction) [1]. The once elusive promise of

effectiveness of molecular markers in population improvement is

gradually becoming a reality for model and non-model species

including forest trees. Neale and Savolainen [2] presented a

compelling argument supporting the feasibility to dissect complex

traits in forest trees as well as pointing to some of tree breeding

perceived drawbacks, such as long generation span, substantial

resources dependency, and the size required for proper testing

across a vast geographic representation. Most economically

important tree species are still largely undomesticated, having

predominantly an outcrossing mating system and very large
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natural populations. This is expected to result in high nucleotide

diversity and low linkage disequilibrium [3,4], thus making them

suitable candidates for association genetics or linkage disequilib-

rium mapping [2].

However, in such wild populations genetic structure, such as the

presence of provenance or racial effects and/or intra-racial spatial

relatedness between trees may affect association genetics results

[5,6]. Overlooking these structures in the data has been considered

as one of the main causes of spurious associations (i.e., false

positives) [7]. To overcome such drawbacks, several methods have

been developed and successfully implemented [8,9,10]. Among the

many solutions to account for genetic structure, the ‘Unified

Mixed-Model’ (UMM) [11] offered a simple method whereby both

sub-populations (i.e., races or provenances) and cryptic kinship

structures can be accounted for in association genetics analyses. In

summary, population and kinship structures are quantified using a

model-based Bayesian clustering algorithm (STRUCTURE; [12])

and one of the pair-wise kinship estimation procedures (e.g.,

[13,14]) are then included in the UMM model as fixed or random

effects, respectively [11]. Yu et al. [11] demonstrated the value of

accounting for population and/or family structures through the

incorporation of genomic control and marker-based kinship in

mixed model association testing using two samples: a family

sample of 14 human families and a sample of 277 diverse maize

inbred lines. From that initial work, effects of population and

family structure on associations has been investigated in several

agricultural crops such as Glycine max [15], Hordeum vulgare [16],

Brassica rapa [17], Triticum aestivum [18,19] to name a few.

To date, a number of association genetics studies have been

reported for forest trees using either structured or unstructured

populations. Various analytical methods have been applied to

detect associations, including classical general linear model (GLM)

with and without family structure [20,21], UMM [22,23,24,25,

26,27,28,29,30,31], and quantitative transmission test for linkage

disequilibrium (QTDT) [32]. In the absence of population and/or

family structures, the inclusion of the Q (population structure)

and/or K (family structure) matrices in the UMM is expected to

unnecessarily remove parts from the error term’s variation and

degrees of freedom to the population and/or family effects. This

results in changes in the mean square error term which ultimately

affects the statistical power of the association tests.

Due to the lack of accessible genome-wide genotyping systems

and given the generally low extent of linkage disequilibrium in

forest trees, all these association studies were carried out based on

the targeted analysis of polymorphisms in candidate genes. Only

more recently genome-wide genotyping approaches have been

applied in Pinus taeda [28] and Pinus contorta [33] for association

mapping, and in whole-genome prediction studies in Pinus taeda

[34], and Eucalyptus [35]. While candidate gene association studies

are severely biased by the a priori choice of genes that are allegedly

involved in trait control, genome-wide studies are unbiased in this

respect, and therefore tend to better converge to the true genetic

architecture of the complex traits investigated.

Recently, a high throughput Diversity Array Technology

(DArT) marker platform was developed for species of Eucalyptus

[36]. Briefly, DArT is a genotyping technique based on genome

complexity reduction, followed by hybridization to spotted probe

microarrays that offer a rapid, cost-effective and efficient

methodology for high-throughput genome-wide marker analysis

[37]. The operational array with 7,680 selected polymorphic

DArT markers is highly transferable across Eucalyptus species

[38,39], and has provided unprecedented level of resolution for

linkage mapping [40,41,42], QTL analysis [43,44] and Genomic

Selection [35]. Interestingly, a detailed genomic characterization

of these DArT markers aligned to the annotated Eucalyptus grandis

reference genome, showed that they preferentially target the gene

space with 77% of them positioned at ,1 kbp from the nearest

gene model. Moreover, they display a largely homogeneous

distribution across the genome, thereby providing gene-targeted

genotyping and good coverage for genome-wide applications in

association genetics and Genomic Selection (GS) [42]. Given these

very special attributes, the DArT array offers a useful platform for

association genetic testing across the genome, although the

number of markers assayed (7,680) is still less than optimal for a

more powerful full fledged genome-wide association study.

As part of the Biotech MERCOSUR project [45] 303

individuals from different open-pollinated progeny trials of

Eucalyptus globulus core and intergrade populations were genotyped

with the 7,680 DArT marker array. In the present study, our main

objectives were: (1) to test the efficacy of including the Q and/or K
matrices in the association genetics analyses for complex traits for

growth and wood properties and (2) to evaluate and compare the

efficacy of different association mapping models to avoid declaring

false marker-trait associations based on the degree of deviation

between the observed and expected p-values of marker-trait

associations. Additionally, despite of the relatively limited size

association mapping population we had access to, our study also

contributes to the understanding of the genetic architecture of

economically important traits in Eucalyptus globulus.

Materials and Methods

Ethics statement
The Eucalyptus globulus Argentinian trial belongs to the Instituto

Nacional de Tecnologı́a Agropecuaria (INTA) and no specific

permits were required to carry out the study. The three Eucalyptus

globulus Uruguayan trials belong to Mundial Forestación. All the

available data from these three trials were provided by the

company director Rogerio de Aguiar de Moraes under the

agreement of the Biotech MERCOSUR project. Eucalyptus globulus

is an exotic tree species in Argentina and Uruguay and is not

protected or endangered.

Plant material, phenotypic traits, and genotyping
A sample of 303 Eucalyptus globulus (Labill.) individuals growing

at four separate trial sites was used in this study (Table 1). One

trial was located in Argentina: Balcarce, Buenos Aires province

(37u 459 S, 58u 179 W) (134 trees), and the other three in Uruguay

(33u 519 S, 55u 349 W) (in total 169 trees). The mapping

population included trees from 161 families belonging to seven

native races in Australia, and two bulk collections from local

landraces originated in Portugal and Chile. All seeds were open-

pollinated, except two control-pollinated full-sib seedlots from the

Portuguese land race, in the Argentinian trial. The number of

sampled trees per family varied between 1 and 9. Eighteen families

from four Australian races planted in the Argentinian trial were

also present in the two Uruguayan trials.

Several growth and wood properties traits were measured at the

four sites (see Lopez et al. [46] for details). However, measurements

for every trait were not taken in all sites. However, diameter at

breast height (DBH), Pilodyn penetration (an indirect measure of

wood specific gravity), Klason and total lignin, lignin monomer

composition (Syringyl:Guaiacyl S:G ratio), and extractives in

ethanol (Extractives) were measured in all sites and used in this

study. Diameter at breast height (1.3 m from the ground) was

measured in centimetres when trees were 4 (Argentina) and 6

(Uruguay) years old on all surviving trees. Pilodyn penetration

(PILO) was measured in mm using a 6 J Forest Pilodyn with a

Genome-Wide Association Study in Eucalyptus
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2 mm diameter pin, in an east to west direction and without bark

(a small section of bark at 1.3 m above the ground was removed

prior to the PILO readings being taken), when trees were 4

(Argentina) and 6 (Uruguay) years old on all surviving trees. Wood

chemical components were estimated using Near-Infrared (NIR)

spectroscopy. Briefly, for wood chemical traits, cambium to

cambium wood cores were removed at breast height from each

tree in May 2010 (Argentina; 15-year-old) and in October 2008

(Uruguay; 8-year-old) and air-dried (Argentina’ samples) or oven-

dried (Uruguay’ samples). The wood samples were ground to pass

through a 1-mm screen, and NIR spectra were obtained by diffuse

reflectance using a Bruker Optics Co. Multi Purpose Analyzer

(MPA). Partial least squares regression (PLSR) was used for the

evaluation of the NIR spectra (NIR-PLSR models) and for the

calculation of the prediction models. Validation of these predic-

tions was undertaken using conventional chemical assays from 15–

22 independent samples from those used to develop the model. All

models obtained were adequate for screening trees in breeding

programs with a residual prediction deviation (RPD; [47]) above

2.3 (e.g., [48]). The RPD obtained for the E. globulus samples were

3.9, 3.8, 3.8 and 2.3 for Klason and Total lignin, S:G ratio and

Extractives, respectively.

DArT genotyping of all 303 individuals was carried out by

Diversity Arrays Technology Pty Ltd (DArT P/L, Canberra,

Australia) as described previously [36]. DArT dominant marker

data were used to assess population structure, estimate pair-wise

kinship coefficients and linkage disequilibrium, and perform

association genetics analyses.

Data analyses
A subset of 2,364 DArT markers was selected for the analysis

based on quality parameters out of the 7,680 included on the

genotyping array. The selected DArT markers had Call Rate

(percentage of samples that could be scored as ‘0’ or ‘1’) greater

than 80%, Reproducibility (reproducibility of scoring between

replicated samples) greater than 97% and were polymorphic with

frequencies of samples scored as ‘0’ or ‘1’ ranging between 0.95

and 0.05. Level of polymorphism for each marker was calculated

by the expected heterozigosity: He = 1{
P

P2
i where Pi is the

frequency of the ith allele at the DArT marker locus. Because

DArT markers are dominant, the allele frequencies were estimated

making the frequency of ‘0’ genotypes equivalent to Pi
2, assuming

Hardy-Weinberg Equilibrium.

Genotypic data for a subset of 400 randomly taken DArT

markers from the total of 2,364, were used to determine both

population structure and pair-wise kinship coefficients among the

303 individuals, using the model-based Bayesian clustering

algorithm implemented by STRUCTURE [12] and the kinship

procedure of Hardy [13] using the software package SPAGeDi

[49], respectively. STRUCTURE analyses were performed

assuming an admixture model with default settings (i.e., no

informative priors were used). STRUCTURE was run from 1 to

12 inferred clusters (K) with 10 independent runs for each K, each

run starting with a burn-in period of 50,000 steps followed by

100,000 Markov Chain Monte Carlo iterations. The most

probable value of K was selected according to the DK method

[50]. Negative kinship values were set to zero following Yu et al.

[11]. Pair-wise linkage disequilibrium (LD) between individual

DArT markers was calculated by the square allele frequency

correlation coefficient (r2) implemented in the program TASSEL

version 3.0.137 [51] and their statistical significance was computed

by 1,000 permutations using the two-sided Fisher’s Exact test [52].

Mean r2 values were calculated separately for unlinked loci and for

loci on the same chromosome. The 95th percentile of the square

T
a

b
le

1
.

D
e

sc
ri

p
ti

o
n

o
f

p
ro

g
e

n
y

tr
ia

ls
in

th
e

d
if

fe
re

n
t

si
te

s,
n

u
m

b
e

rs
o

f
in

d
iv

id
u

al
s

p
h

e
n

o
ty

p
e

d
an

d
g

e
n

o
ty

p
e

d
an

d
p

h
e

n
o

ty
p

ic
tr

ai
t

m
e

an
s

(s
e

e
te

xt
fo

r
tr

ai
ts

’
ab

b
re

vi
at

io
n

s)
.

P
h

e
n

o
ty

p
ic

tr
a

it
m

e
a

n
s

T
ri

a
l

L
o

ca
ti

o
n

Y
e

a
r

o
f

e
st

a
b

li
sh

m
e

n
t

In
it

ia
l

n
u

m
b

e
r

o
f

tr
e

e
G

e
n

e
ti

c
m

a
te

ri
a

l
a

A
ss

o
ci

a
ti

o
n

p
o

p
u

la
ti

o
n

b
M

e
a

su
re

m
e

n
t

a
g

e
s

(y
r)

c
W

P
a

n
d

D
A

rT
s

tr
e

e
s

d
D

B
H

P
IL

O
K

la
so

n
li

g
n

in
T

o
ta

l
li

g
n

in
S

:G
ra

ti
o

E
x

tr
a

ct
iv

e
s

B
A

L
C

A
rg

e
n

ti
n

a
1

9
9

5
4

2
0

0
1

4
(2

5
0

)
1

3
(1

2
9

)
4

/1
5

1
3

4
1

1
.7

1
2

.6
2

2
.4

2
7

.7
2

.0
2

3
.6

8

G
L

O
U

ru
g

u
ay

2
0

0
0

9
9

3
0

1
2

(1
6

9
)

8
(3

4
)

6
/8

9
2

1
3

.9
1

8
.2

2
1

.2
2

7
.4

2
.2

1
3

.6
9

JE
E

U
ru

g
u

ay
2

0
0

0
2

9
3

4
3

(5
1

)
1

(1
5

)
6

/8
3

8
1

4
.1

1
8

.0
2

1
.9

2
7

.9
2

.1
3

3
.0

5

P
S

E
U

D
O

U
ru

g
u

ay
2

0
0

0
6

5
1

6
1

6
(1

0
9

)
1

3
(2

2
)

6
/8

3
9

1
3

.7
1

7
.3

2
1

.9
2

8
.0

2
.1

6
3

.5
1

a
N

u
m

b
e

r
o

f
p

ro
ve

n
an

ce
s

(n
u

m
b

e
r

o
f

o
p

e
n

-p
o

lli
n

at
e

d
fa

m
ili

e
s)

in
th

e
tr

ia
l.

b
N

u
m

b
e

r
o

f
p

ro
ve

n
an

ce
s

(n
u

m
b

e
r

o
f

o
p

e
n

-p
o

lli
n

at
e

d
fa

m
ili

e
s)

sa
m

p
le

d
in

th
e

as
so

ci
at

io
n

p
o

p
u

la
ti

o
n

.
c
A

g
e

s
at

m
e

as
u

re
m

e
n

ts
o

f
d

ia
m

e
te

r
at

b
re

as
t

h
e

ig
h

t
an

d
P

ilo
d

yn
p

e
n

e
tr

at
io

n
an

d
w

o
o

d
p

ro
p

e
rt

ie
s.

d
N

u
m

b
e

r
o

f
tr

e
e

s
m

e
as

u
re

d
fo

r
w

o
o

d
p

ro
p

e
rt

ie
s

(W
P

)
an

d
g

e
n

o
ty

p
e

d
fo

r
th

e
as

so
ci

at
io

n
st

u
d

y.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

8
1

2
6

7
.t

0
0

1

Genome-Wide Association Study in Eucalyptus

PLOS ONE | www.plosone.org 3 November 2013 | Volume 8 | Issue 11 | e81267



www.manaraa.com

root transforming of r2 distribution was taken as a population-

specific critical value of r2 [53], beyond which LD was likely to be

caused by genetic linkage.

The association mapping tests were carried out using two steps.

In the first, data were standardized within each site and trait by

subtracting each individual measurement from the mean trait

value at that site and dividing the adjusted measurement by the

site’s standard deviation. The effect of large-scale environmental

variation within each site was removed by exporting residuals from

an analysis where replicate and incomplete block (for the

Argentinian trial) was included as fixed or random effects,

respectively. In the second step, these residuals were used as

adjusted phenotype and single-marker associations were deter-

mined using the Unified Mixed-Model [11]:

y~SazQvzzuze ðEq:1Þ

where y, a, v, u, and e are vectors of adjusted phenotypic

observations, DArT effects (fixed), population effects (fixed),

kinship effects (random), and residual effects, respectively, and S,

Q, Z are incidence matrices relating y to a, v, and u, respectively.

Several models were tested including GLM without population and

family structures (GLM), and UMM with different combinations

of population and family structures (Q, K, Q+K). Additionally, as

recommended by Price et al. [54], the computationally demanding

Q matrix was substituted by the principal coordinate’s analysis’

(PCA) P matrix resulting in two additional models (P and P+K).

We removed the last column of the Q matrix to eliminate linear

dependence between columns; however, all the columns (i.e., axes)

were used in the P matrix to represent the population structure

because it does not result in linear dependency. All analyses were

conducted using TASSEL version 3.0.137 [51] and positive

association were determined at the nominal p,0.05 level, and

were further corrected for multiple testing using the false discovery

rate (FDR) method for multiple comparisons [55] with p,0.05.

The FDR thresholds were calculated using the QVALUE package

[56] implemented in R (http://www.r-project.org/).

Model comparisons were based on the degree of deviation from

uniform distribution and estimates of the mean square differences

(MSD) between the observed and expected p-values of all DArT

markers following the method described in Stich et al. [18]. A high

MSD value indicates a strong deviation from a uniform

distribution of p-values, suggesting that the type I error of the

tested model could be substantially higher than the nominal a-

level [18].

Pearson correlations were also calculated between the residuals

from the measured traits using the CORR procedure in SAS [57].

Correlation between DBH and the wood chemical traits were very

low (either positive or negative; i.e., from 20.06 to 0.03) and not

significantly different from zero (p.0.27). However, wood

chemical traits were highly inter-correlated (either positive or

negative; i.e., from 20.43 to 0.96) and significantly different from

zero (p,0.05), while PILO was only weakly positive correlated

with DBH (0.16 p = 0. 05).

Based on the sequence information of the trait-associated DArT

markers the following analyses were carried. Firstly, a sequence

BLASTN search (E-value#1e23) against the Eucalyptus grandis

genome database (version 1.1 available in Phytozome 6.0, http://

www.phytozome.net/eucalyptus.php), was carried out. To assess

the putative identities of these DArT markers, BLASTX searches

were performed against the GenBank non-redundant protein

database (http://blast.ncbi.nlm.nih.gov/Blast.cgi) with an E-value

cut-off#1e-10. Annotation and mapping routines were run with

Blast2GO [58], using functional annotations and assigning gene

ontology terms (GO terms) ([59]; http://www.geneontology.org/),

and an enzyme classification number (EC number). Secondly, the

Geneious pro 6.0.3 software (Biomatters http://www.geneious.

com/) was used to assemble redundant DArT marker probe

sequences, using the default parameter of 80% identity in a word

length of 14 nucleotides. Thirdly, the genomic position the DArT

marker probes as determined by aligning their sequences to the

Eucalyptus grandis reference genome (version 1.1) [42], was used to

scrutinize the gene content of the genomic window flanking the

lignin S:G ratio associated DArT marker using the Gbrowse tool

of the Eucalyptus grandis genome version 1.1 available in

Phytozome, (http://www.phytozome.net/eucalyptus.php).

Results and Discussion

DArT marker genotyping
DArT genotyping produced 2,364 high quality dominant

markers with He values ranging from 0.04 to 0.50 (the maximum

value for a bi-allelic marker), with an average of 0.33 and most of

them having He values greater than 0.40 (Figure S1). Based on the

Eucalyptus reference map [40], 1,909 of the 2,364 DArT markers

had a known map location indicating that a reasonable genome-

wide coverage from the recombination standpoint was provided by

these markers (Figure 1). These 2,364 also provided, on average, a

genome-wide physical genotyping density of one marker every

,260 kbp or ,0.5 cM based on recent genome-wide estimates of

the relationship between physical distance and recombination

frequency in the Eucalyptus genome [42]. An average of 174

markers per linkage group were assayed (1 marker/0.58 cM), with

a minimum of 95 markers in linkage group 4 (1 marker/0.85 cM)

and a maximum of 246 in linkage group 5 (1 marker/0.39 cM).

In the selected sample of 303 trees, pair-wise r2 estimates among

the 1,909 DArT markers with known map position [40] varied

from 0 to 1 with a mean of 0.09. The 95th percentile of the

distribution of unlinked r2 pairs was estimated at 0.025. However,

the extent of LD within the different linkage group appeared

variable. Mean pair-wise estimates of r2 across all the genome (i.e.,

intra- and inter-chromosomal) varied from 0.012 to 0.032. The

number of pair-wise estimates r2 above the baseline 0.025 varied

from 3.63% to 9.23%. However, a second-degree loess curve that

fitted the r2 estimates did not reach the 95th percentile baseline for

any linkage group (Figure S2), indicating that the marker data

obtained, although genome-wide, was not dense enough to detect

consistent LD. This was expected, confirming that overall (i.e.,

using the intra- and inter-chromosomal and significant and non-

significant r2 marker pairs) LD decays rapidly below a centimor-

gan, a recombination fraction found to correspond, on average, to

513 kbp [42]. The very few studies conducted in Eucalyptus species

at the single gene level showed that LD decays rapidly within a few

hundred base pairs [21,60,61], corroborating, as expected, that a

higher marker density would be required to carry out a bona fide

LD based genome-wide association study (GWAS).

Population structure
The genetic structure obtained by STRUCTURE and PCA was

similar (Figure 2). The first two principal components explained

24.84% (PC1) and 20.78% (PC2) of the variation in estimated

genotypic state probabilities across the 400 DArT markers. The

STRUCTURE analysis revealed three subpopulations, henceforth

denoted as genetic groups (Figure 2A), which coincided with the

broad geographical origin (i.e., races) in Australia [62]. Of the 303

trees, only four had membership probabilities set below 0.6 and

had to be assigned to more than one genetic group. Genetic group

1 included 93 trees (31%), belonging to Eastern and Western

Genome-Wide Association Study in Eucalyptus
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Otways races (in Victoria, Australia), and to the Chilean

provenance in the Uruguayan trials. Genetic group 2 included

109 trees (36%) belonging to the Jeeralangs (i.e., Strzelecki Ranges

race in Victoria, Australia) and the E. globulus spp. pseudoglobulus

(Naudin ex Maiden). Genetic group 3 included 101 trees (33%)

belonging to the Furneaux Group of Islands, and North-Eastern

and South-Eastern Tasmanian races, the Chilean provenance in

the Argentinian trial and the Portuguese land race. This clear

racial genetic grouping is in line with the results reported in similar

native population studies of E. globulus using microsatellite markers

[63,64]. They also coincide with Freeman et al. [65], in assigning

the Portuguese land race to a Tasmanian origin. It is interesting to

note however, that in the present study Jeeralang families were

clustered together with E. globulus spp. pseudoglobulus, whereas in

Jones et al. [63], they were considered intergrades which were

more closely related with Victorian E. globulus spp. globulus (such as

Otways) and E. globulus spp. bicostata, than to E. globulus spp.

pseudoglobulus. The resulting patterns from the STRUCTURE

program suggest that the inclusion of the Q or P matrices in the

analyses is expected to affect the association test’s statistical power

(see below). In spite of the unambiguous clustering, consistent with

the geographically and taxonomically distinct subpopulations, the

overall FST value was only 0.09560.01 indicating a moderate

genetic differentiation between the three E. globulus genetic groups.

The estimate is similar to Steane et al. [64] with 0.09060.02,

across an even wider range of core E. globulus and integrated races.

At the phenotypic level, visual inspection of the box plots based

on the residual trait values in each of the three subgroups defined

by STRUCTURE (Figure S3), and the p-values for differences of

the least square means (Table S1) showed significant differences

between some groups in all traits studied, except Extractives.

Victorian races (Genetic Group 1 and 2) had superior DBH, but

also higher Klason and total lignin and Extractive content,

compared with Tasmanian races (Genetic Group 3), hence

indicating better growth but poorer pulp quality attributes. As

expected, the Jeeralang and E. globulus spp. pseudoglobulus material

(Genetic Group 2) had the highest density (lowest Pilodyn) of the

three [46,62].

Family structure
The pair-wise relatedness among the 303 trees resulted in the

identification of an array of variable relationships (Figure 3),

indicating the presence of a within population familial structure,

and providing justification to include the K matrix in the

association genetics analyses. We knew a priori that some of the

trees were related, because they belonged to the same open-

pollinated family, the average relationship coefficient for these

trees was 0.232 (closest to the pedigree expected value of 0.25),

whereas the average for the unrelated pairs of trees was 0.032

(closest to the expected pedigree value of zero). Mean relationship

within genetic groups was 0.076, 0.069 and 0.083 for genetic

groups 1, 2, and 3, respectively. As expected, the relationship

among trees from the same genetic group was greater than those

from different genetic groups. This was particularly true between

groups 2 and 3 (0.011). The most frequent class of genetic

relationship was for values between 0.00 – 0.05 (75.6%), followed

by values between 0.05 – 0.10 (12.7%) (Figure S4). Given that the

family structure is truly present, then correlation between pair-wise

relatedness and pair-wise geographic distance should be negative

and significant. In fact, negative and highly significant Mantel

correlation was observed for the DArT markers (20.49,

P,0.0001), confirming the presence of isolation-by-distance as

the probable cause of the family structure found and once again

justifying the inclusion of the K matrix in the association genetics

analyses.

Figure 1. Reference genetic map position of 1,909 DArT markers assayed in the association study. Map position from Hudson et al.
(2012).
doi:10.1371/journal.pone.0081267.g001
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Association genetics models comparison
Results from association analyses clearly indicated that there

was no universal/single model that suited all the studied traits

(Table 2, Figure 4). Overall, the GLM did not perform well. The

mean square difference (MSD) between observed and expected

p-values was highest for the GLM model (Table 2) and the

distribution for MSD was substantially deviated from uniformity

(Figure 4). It is noteworthy to note the drastic difference when

population structure was included as a source of variation in the

model. Irrespective of which population structure matrix was used

(Q or P), the models that included a population structure

performed consistently better than those that did not for all traits

(Table 2, Figure 4); this was expected given the geographical

structure among the E. globulus population being studied. The

MSD of the Q model (and P model) ranged from 0.000469

(0.000069) for Extractives to 0.006154 (0.001328) for PILO, and

was considerably lower than the value found for the GLM model

(Table 2). Additionally, the curves in Figure 4 show that

accounting for population structure (P or Q) dramatically

increases the statistical power. Moreover, the GLM model

produced a number of apparent false positive or spurious

associations across all traits (Figure 4). As a result, using the Q
or P matrix resulted in a considerable reduction in the number of

significant marker-trait associations before multiple testing correc-

tions were applied (p,0.05; see Figure 5 for a comparison between

the simplest model (GLM) and both, the Q or P models). The

importance of accounting for structure in the analysis was recently

demonstrated in E. globulus [66]. In that study, Külheim et al. [66]

detected hundreds of false-positive associations demonstrating the

pitfall associated with ignoring geographical origin.

In the present study, we have incorporated the kinship

relationship among trees. Accounting for family structure is

expected to remove most of the variance associated with close

relatedness that would not have been explained by the Q or P
matrices [16]. In our study, the inclusion of the K matrix in the

model appeared to be trait dependent. Although 76% of pair-wise

relationship estimates were close to 0, for DBH and PILO the K

model outperformed the Q or P models, i.e. produced smaller

MSD values (Table 2) and showed a similar expected distribution

of p-values (Figure 4), whereas the opposite was true for the wood

chemical traits (S:G ratio, Klason lignin, Total lignin, and

Extractives). Furthermore, the K model produced a more stringent

reduction in the number of significant markers (p,0.05) with

respect to the Q and P models (from 1.18% to 6.98%) in the six

traits tested (Figure 5). This finding suggests that, when there are

complex interrelationships among trees, both within and among

subpopulations, fitting a Q (or P) model may not be adequate to

Figure 2. Results of population structure analyses using a Bayesian approach implemented by STRUCTURE (A) and PCA (Principal
coordinate analysis) (B). Colors define three Genetic Group: Group 1 in blue (Eastern and Western Otways races and the Chilean provenance of the
Uruguayan trials), Group 2 in red (Strzelecki Ranges race and E. globulus spp. pseudoglobulus (Naudin ex Maiden), and Group 3 in yellow (Furneaux,
North-eastern and South-eastern Tasmania races, Chilean provenance of the Argentinean trial and Portuguese land race provenances).
doi:10.1371/journal.pone.0081267.g002
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reduce the number of spurious associations. Such results highlight

the importance of accounting for the various sources of variation

due to structure in the model (i.e., Q and/or K matrices). Yu et al.

[11] presented a compelling scenario where, in some cases,

population structure was not needed as family structure was

adequate to capture the underlying structure in the data (e.g., ear

height). Generally, family structure captures substantial amounts

of variation caused by population structure and population

structure inclusion would be only necessary in cases where obvious

regional differences exist.

As expected, the complete Q+K [11] and P+K [54] models

were equivalent, i.e. the MSD values between observed and

expected p-values were similar and have similar MSD distributions

(Figure 4). Furthermore, both models (i.e., Q+K and P+K) yielded

similar reduction of number of significant (p,0.05) marker-trait

associations for all studied traits (Figure 5). These findings

demonstrate that association mapping models based on the two

Figure 3. Heat map of the pair-wise relationship coefficients among the 303 E. globulus trees produced from the SPAGeDi program
showing the three Genetic Groups: Genetic Group 1, 2 and 3 from right to left. The heat scale represents pair-wise relationship coefficients
for all pairs of individual trees. Values greater than 0.5 are not shown and account for only 0.08% of the distribution.
doi:10.1371/journal.pone.0081267.g003

Table 2. Mean squared differences (MSD) between observed and expected p-values for the six association genetics models
applied in the study.

Trait

Model DBH PILO S:G ratio Klason lignin Total lignin Extractives

GLM 0.013445 0.012289 0.013029 0.007098 0.004264 0.000624

Q 0.004725 0.006154 0.002134 0.001836 0.001214 0.000469

P 0.002502 0.001328 0.001497 0.000866 0.000907 0.000069

K 0.001250 0.000800 0.002208 0.002828 0.001893 0.003370

Q+K 0.001044 0.000718 0.002461 0.003167 0.001918 0.000427

P+K 0.001017 0.000798 0.002293 0.002508 0.001725 0.000070

The selected models are highlighted in bold (see text for models’ and traits’ abbreviations).
doi:10.1371/journal.pone.0081267.t002
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population structure matrices Q and P would be equally

appropriate, when the K matrix is included. This indicates that

it may be possible to replace the computationally intensive

STRUCTURE algorithm with a simple PCA, an important result

when large number of markers and large population sizes are

included in the UMM, an increasingly common situation as much

Figure 4. Plots of the observed vs. expected p-values for the six association genetics models studied for all traits. See text for models’
and traits’ abbreviation.
doi:10.1371/journal.pone.0081267.g004
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Figure 5. Association mapping results from the different linear models indicating the number of significant (p-value#0.05) DArT
markers associated with growth and wood properties traits. In each bar, the gray and black areas represent the number of significant DArT
markers from the specific model (i.e., GLM, Q, P, K, Q+K and P+K) and overlapping between the specific model and GLM, respectively. See text for
models’ and traits’ abbreviation.
doi:10.1371/journal.pone.0081267.g005

Genome-Wide Association Study in Eucalyptus

PLOS ONE | www.plosone.org 9 November 2013 | Volume 8 | Issue 11 | e81267



www.manaraa.com

higher throughput sequencing-based SNP genotyping systems are

becoming accessible for forest trees [67,68,69]. Similar conclusions

have been reached by Zhao et al. [70] in soft winter wheat (Triticum

aestivum L.) and by Stich et al. [18] in Arabidopsis thaliana.

Based on the MSD values (Table 2), the distribution of the

expected and observed p-values (Figure 4), and the number of

significant marker-trait associations (Figure 5), the best models by

trait combinations used for comparing association results were as

follows: P+K model for DBH, Q+K model for PILO, and P model

for all other wood chemical traits (S:G ratio, Klason lignin, Total

lignin, and Extractives).

DArT marker-trait associations
A total of 14,184 association tests were performed (2,364 DArT

markers versus six traits). This resulted in 962 positive associations

before multiple testing corrections at the significance level of

p,0.05. Using 1,000 permutations in an F-statistic test for

correcting the rate of false discoveries, the number of positive

single marker-trait associations was reduced to 18 (16 for DBH

and 2 for S:G ratio; Table 3). These results could apparently

suggest that wood specific gravity (PILO) and possibly the other

chemical properties of wood (S:G ratio, Klason lignin, Total

lignin, and Extractives) may involve fewer genes, resulting in a

lower number of DArT markers associations, at least compared

with growth (DBH), which is expected to be a more complex trait

influenced by many genes. In fact, chemical wood properties often

involve a single biosynthetic pathway and consequently one could

expect a lower number of marker-trait associations when

compared to complex traits such as growth or wood density that

are affected by many different physiological processes. However,

this is not what has been emerged in more recent and better

powered biparental QTL studies in Eucalyptus. For example, Gion

et al. [71] detected similar number of QTLs for growth and wood

chemical traits in E. urophylla and E. grandis. Freeman et al. [44]

identified a lower number of QTLs for DBH (11) than for wood

chemical traits (average 14.2 QTLs/trait). Moreover, in Resende

et al. [35], the number of markers with largest effect that

maximized the proportion of heritability captured by Genomic

Selection for pulp yield was essentially the same (,200) as the

number that did so for height growth. These results suggest that

for any given experimental population size and genetic back-

ground there are other issues determining the likelihood of QTL

detection such as the extent of phenotypic variance and the

heritability of the trait.

The amount of phenotypic variation explained by each marker

(R2) in the selected models was always modest, accounting for

4.02% to 13.76% (only three of them had major effects above

10%, Table 4), with an average of 7.27% for DBH and 5.64 for

S:G ratio. These small R2 values are consistent with the genetic

architecture of complex traits expected to be influenced by many

loci, each with a relatively small effects (i.e., Fisher’s 1918

infinitesimal model). Recent studies in Eucalyptus have reported low

numbers of QTLs for growth and wood quality traits, whose

effects rarely accounted for more than 5% of the observed

variance [43,44,71,72,73,74,75]. In E. globulus, Bundock et al. [72]

detected six QTLs for diameter (DBH) and height and two for

PILO explaining between 7.2% and 10.1% of the phenotypic

variation. Freeman et al. [73] identified 11 QTLs for growth and

wood properties traits, with each QTL explaining between 3.8%

and 12.3% of the phenotypic variation. In E. nitens, Thumma et al.

[75] found 36 QTLs for Klason and total lignin, extractives and

density amongst other wood traits, with R2 varying from 2.8% to

7.3% and averaging 5%. Gion et al. [71] detected 117 QTLs for a

number of wood properties (including chemical, technological,

physical, mechanical and anatomical) and growth traits in an

interspecific cross between E. urophylla and E. grandis. In

conclusion, most QTLs had effects below 5% and only 13 of

them had effects above 15%. However, for growth traits the R2

values varied from 4.1% to 42.2% and from 5.0% to 37.0% for

wood traits. In four-year-old progenies of two interspecific

backcross families of E. urophylla and E. grandis, Kullan et al. [43]

detected 5 QTLs for DBH and 12 for wood basic density. In this

case, the R2 varied from 4.6% to 8.0% averaging 5.9% for DBH,

and from 3.1% to 12.2% averaging 5.9% for wood density.

As expected, we did not find any overlap between the

associations found for DBH and S:G ratio, consistent with the

lack of phenotypic correlation between them (Pearson coefficient -

0.053 p-value 0.37). However, it is interesting to note that the

magnitude of these 18 associations did not change across the six

models (p-values,0.05 and FDR p-value#0.05), except for marker

ePt-638303 for DBH which was not significantly associated when

using the K and Q+K models. Such consistency of results,

notwithstanding the slight differences in R2 estimates across

models, is a promising indication that the associations are indeed

real (Table 4). Nevertheless, given the limited size mapping panel,

these marker-trait associations will require further validation in

independent populations.

It is important to highlight, however, that while the genomic

locations of the DArT-marker-trait associations found in this study

should be informative, we acknowledge the fact that the estimated

magnitudes of effects are likely upwardly biased. This is probably

the case for most marker-trait associations and QTLs mapped so

Table 3. Association mapping results from the different linear models indicating the number (and percentage) of significant
markers found associated with growth and wood property traits after correction for multiple testing (FDR p-value#0.05).

Trait

Model DBH PILO S:G ratio Klason lignin Total lignin Extractives

GLM 126 (5.3) 71 (3.0) 45(1.9) 16(0.7) 0 (0.0) 0 (0.0)

Q 44 (1.9) 5 (0.2) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

P 28 (1.2) 0 (0.0) 2 (0.1) 0 (0.0) 0 (0.0) 0 (0.0)

K 18 (0.8) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Q+K 21 (0.9) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

P+K 16 (0.7) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

In bold, the number of significant marker-trait associations detected in the selected models by trait combination (see text for models’ and traits’ abbreviations).
doi:10.1371/journal.pone.0081267.t003
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far in forest trees, although this is rarely recognized. Overestima-

tion of the proportion of variance explained in association studies

is a phenomenon that has traditionally been called the ‘winner’s

curse’ [76] or the ‘Beavis effect’ [77] when referring to QTLs

mapped in limited size biparental crosses. Reasons for this include

the usually limited sample sizes used and the fact that a single

dataset is used for both discovery and parameter estimation,

causing a correlation between the test statistic and the estimated

marker effect size. Additionally genome-wide associations and

QTLs are typically estimated ignoring the rest of the genome

which also contributes to an upward bias. This problem can be

mitigated by fitting all markers simultaneously as random effects,

an approach that has been proposed and adopted for Genomic

Selection [78] or improved ways of carrying out GWAS [79]. This

approach, successfully applied in several animal and plant species,

has been shown to result in a much larger number of effects

detected (hundreds), with considerably smaller magnitudes (,1%),

converging to a quasi-infinitesimal model while explaining very

large proportions of the heritability for complex traits [80].

Recently three Genomic Selection studies were carried out in large

populations (.700-900 individuals) of Pinus and Eucalyptus, all of

them showing that hundreds of small marker effects distributed

across the whole genome contribute to height growth and wood

quality traits [34,35,81], in clear contrast to the long held beliefs

from QTL mapping experiments of the existence of at least a few

loci with large effects (5-15%) controlling such complex traits.

We compared the results of estimating markers effects

simultaneously as random effects or fixed effects using Eq. 1.

DArT markers effects were fitted as random using Bayesian least

absolute shrinkage and selection operator (LASSO) in the BLR

package for R, version 2.12.2 ([82,83]). Results indicated that the

estimated absolute effects of the eighteen significant DArT

marker-trait associations (Q-value,0.05) under a fixed model

(Eq. 1) were 21 and 24 times larger than those estimated under the

random model (Bayesian LASSO) for DBH and S:G ratio,

respectively. Furthermore, the proportion of the genetic variance

explained by the markers (2 pi (1-pi) âa2; where pi is the frequency of

one allele at that locus and âa2 is the estimated marker effect)

decrease on average from 19.64% to 0.06% for DBH and from

11.78% to 0.02% for S:G ratio, when estimated as fixed and

random effects, respectively. Increasing the size of the association

mapping populations is expected to reduce these differences.

Genomic locations and putative annotations of marker-
trait associations

The present study identified 18 significant DArT marker-trait

associations after correcting for multiple testing and accounting for

racial and family structure in the data. Fifteen of these 18 DArT

marker probes had been sequenced, 13 of them were physically

aligned to a unique position on the 11 chromosome scaffolds [42],

and two were aligned to still unanchored small scaffolds

(numbered beyond 11) (Table 5). The 15 DArT probes were

assembled in 13 non redundant sequences (two contigs and 11

singletons) consistent with their alignment position reported earlier

[40]. Markers ePt-575116 and ePt-639597, associated with DBH

belong to the same locus located at 28,708,000 bp and markers

ePt-503848 and ePt-638347, associated with S:G ratio, map to

position 30,915,259 bp (Table 5). Annotation of the 15 sequences

was initially based on primary sequence homology searches.

Under an E-value threshold of ,1.e-10, eight DArT marker

sequences, all associated with DBH, had significant BLASTX

matches (Table 5) while no match to genes was found for the two

DArT markers associated with S:G ratio. Sequences with a

positive BLASTX match were annotated using GO terms. As a

result, GO terms were assigned to eight sequences totalizing 28

GO terms (Table 5). Blast2GO analysis at process level 3 showed

that among the different biological processes (18 GO terms), the

sequences belong to ‘Macromolecule Metabolic Processes’ (4),

‘Primary Metabolic Process’ (4), ‘Nitrogen compound metabolic

process’ (3), ‘Cellular metabolic process’ (3), ‘Biosynthetic process’

(1), ‘Establishment of localization’ (1), and most surprisingly,

‘Response to abiotic stimulus’ (1), ‘Response to stress’ (1). Of these

sequences, two were assigned with EC numbers: Serine endopep-

tidase (EC: 3.4.21.0) and RNA-directed DNA polymerase (EC:

2.7.7.49).

Comparison of genomic position of the associations found with

previous QTL mapping studies were carried out, although to date,

few have been the QTL detection reports in Eucalyptus using DArT

markers. Interestingly, however, one of the DArT markers (ePt-

503848) associated with S:G ratio in our population was also

mapped to a QTL by Freeman et al. [44] for the same trait on

linkage group 10. QTLs for lignin composition related traits were

also mapped to the same segment of linkage group 10 early on by

Thamarus et al. [84] for pulp yield (a trait strongly correlated with

S:G ratio), by Thumma et al. [75] also for pulp yield, and by Gion

et al. [71] for Klason lignin. The strong concurrence between

independent reports mapping a QTL for lignin composition traits

on this region of linkage group 10 prompted us to scrutinize the

corresponding genomic regions in the vicinity of our DArT marker

ePt-503848, associated with S:G ratio. This marker was positioned

starting at 30,915,259 bp on chromosome scaffold 10 which has

approximately 40 Mbp total size. The analysis revealed the

presence of the ferulate 5-hydroxylase (F5H) gene, annotated

with strong support at position 29,822,332 bp of the same

chromosome 10. Ferulate 5-hydroxylase (F5H), also referred to

coniferaldehyde 5-hydroxylase is a key enzyme involved in

synthesizing the monolignol sinapyl alcohol and, ultimately, S

lignin moieties. F5H therefore affects the partitioning between the

two major monolignols, coniferyl and sinapyl alcohols. The major

role of this gene in controlling the S:G ratio was further shown by

the drastic increase in the Syringyl monomer levels when

overexpressed in transgenic poplars, as reported by different

research groups [85,86,87]. The distance between DArT marker

ePt-503848 and the F5H gene is slightly over 1 Mbp. However

recent comparative mapping analyses showed that the consider-

able genome size difference between the E. grandis (640 Mbp) and

E. globulus (545 Mbp) genomes is largely due to the sum of many

small insertions/deletions widely distributed across the genome

(Josquin Tibbits unpublished). It is therefore reasonable to

speculate that this 1 Mbp difference between the marker and

the gene could in fact be much smaller in the E. globulus genome.

As tentative as it may be, this putative co-localization provides an

appealing indirect biological validation of the association we found

for S:G ratio in our study.

Additional comparisons between the associations found in our

study and QTLs mapped for diameter growth in previous reports

are only possible at the coarse linkage group level. For example, as

in our study, QTLs for diameter growth were also detected on

linkage groups 3, 5, 7 and 10, in a recent multi-pedigree E. globulus

[44] report. If we consider, however, the genome-wide results

reported by Resende et al. [35] in two large hybrid Eucalyptus

breeding populations with 780 and 920 individuals respectively,

several hundred DArT markers associated with DBH were found

spread out across all 11 chromosomes. When fitted in genomic

selection models, the 200 associated DArT markers of largest effect

captured over 80% of the heritability for diameter growth (DBH),

although the individual effects of these markers rarely surpassed

1%. Assuming that this is the most likely genetic architecture of

Genome-Wide Association Study in Eucalyptus
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this growth trait in Eucalyptus, and therefore that the whole genome

takes part in controlling this complex trait, comparative QTL

position analyses for such multifactorial traits become too

uncertain to be of any use.

Conclusions

The results of this study highlight the importance of taking into

account all relevant sources of variation and assessing the relative

value of using different analytical models in association mapping

studies in forest trees. The approach taken in our analysis was

especially rigorous to avoid declaring false marker-trait associa-

tions, generally considered more detrimental than false negatives

in genome-wide associations studies. In particular, it was

important to account for possible genetic structure in the data,

both from regional genetic groups (races and provenances) and

within population kinship relationships (cryptic family presence). It

was also essential to use more stringent significant threshold levels

in the tests, such as 1 or 5%, and to look at the mean squared

differences between observed vs. expected p-values between the

different models, when a considerable trait by model interaction

was observed. Assessing the impact of different population

structures and analytical models on the power and accuracy of

association genetics in other Eucalyptus populations and forest tree

species in general will be important to validate our results. On

other hand, had phenotype prediction by a Genomic Selection

approach been the goal, the converse would be true. GS estimates

all marker effects simultaneously, precluding the prior search for

significant associations by rigorous significance tests, but rather

retaining all markers or subsets of them as predictors of

performance, while focusing exclusively on selection efficiency.

In such a context, most likely the several hundred associations we

had found prior to stringent correction for false discoveries would

be retained in a predictive model, a subject we are currently

investigating, in line with recent findings in Eucalyptus [35].

Our estimates of LD corroborated our expectation that a much

higher marker density would be required to carry out a genuine

association genetics study in this population, although this is by far

the densest genotyping coverage used specifically for association

mapping in Eucalyptus to date. Moreover, given the size limitation

of our mapping panel we recognize that we had limited power to

detect many smaller effects, and that the marker-trait associations

found, despite the high statistical stringency used to declare them,

will require independent validation. This is likely the current status

of most association mapping studies previously reported in

Eucalyptus that used even smaller population sizes, varying from

86 to 323 and averaging 186 (reviewed by Grattapaglia et al. [88]),

exception made by recent Genomic Selection experiments [35].

Nevertheless, unlike candidate gene based association studies that

are inherently biased by the initial choice of what genes to assay,

this association study, although carried out at a marker density far

from ideal, points, in an unbiased way, to genomic regions

putatively involved in controlling growth in general and S:G ratio

in particular. While several independent, although indirect, pieces

of evidence were compiled from the literature pointing to the F5H

gene as a candidate underlying the single marker-trait association

found for S:G ratio, in the case of volume growth the picture is

certainly blurrier. As tempting as it may be to propose genes

identified as candidates for controlling volume growth, given the

paramount complexity of this trait, considerably more experimen-

tal evidence and independent validation would be required to do

so. Additionally, from the applied standpoint, simply monitoring

the inheritance of a handful of genes would hardly impact the

advancement of a breeding population.
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